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1. INTRODUCTION 

THE THERMAL entry region in ducts has been studied exten- 
sively in the past, see Shah and London [I]. Many inves- 
tigators have analyzed the hydrodynamic entry length prob- 
lem, for example see Vrentas et al. [2] and Christiansen et al. 
[3], and for the thermally developing flow with a developed 
velocity profile, see Hennecke [4], Hsu [SJ, and Verhoff and 
Fisher [6]. Recently, Nguyen [7] applied the finite difference 
method to this problem and provided accurate values for the 
incremental heat transfer number and entrance length for Pe 
ranging from 1 to 1000. 

The simultaneously developing flow in a circular tube, 
where both the velocity and temperature profiles are devel- 
oping together, was first analyzed by Kays [S] in 1955. Shah 
and London reviewed most of the relevant analyses and 
tabulated NU results from Hornbeck 191, Manohar [lo], and 
Hwang [l l]. Pagliarini’s 1121 is the only study found in the 
literature of the axial diffusion effects in simultaneously 
developing flow in a circular tube with infinite extent. 

In this paper, the results of a numericaf study of the sim- 
ultaneously developing flow in a circular tube, accounting 
for axial diffusion of momentum and heat, are presented. 
The velocity and temperature profiles are assumed to be 
uniform at upstream infinity. Two types of thermal boundary 
conditions are considered-a constant axial wall temperature 
and a constant wall heat flux. The velocities and temperature 
are calculated using a finite difference scheme on a stretched 
mesh. Extended Richardson extrapolation is used to extrapo- 
late three mesh sizes to zero mesh size giving excellent agree- 
ment with previous accurate solutions, see Nguyen [I3] and 
Nguyen and Maclaine-cross [I4]. 

2. FORMULATION OF PROBLEM 

In the present study we analyze the steady laminar flow of 
a Newtonian constant property fluid through a circular tube 
of infinite extent. Both the temperature 7’, and velocity UT, 
are uniform at upstream infinity. The upstream region is a 
stream tube which is impermeable, frictionless, and thermally 
insulated. The real tubedownstream of theentrance is infinite 
in extent with a fully developed parabolic velocity profile at 
the exit and subject to the boundary condition of uniform 
wall temperature or uniform wall heat flux. In the present 
analysis, the origin of the axes is located on the tube wall. 
This system of axes is convenient in setting up the solution 
field and marching the iterative procedure. 

The equations of motions are written in terms of the stream 
function li, and vorticity <, defined by 

where u. a are velocity components in the X-, r-direction. 
The dimensionless governing equations for vorticity, 

stream function and temperature, derived from the Navier- 
Stokes equations, are as follows 

(2) 

(3) 

(4) 

in which 0 = (T- T,)/(T,- TX), Re = U,D,/v, and 
fr = v/a. Here D,,, v, and iy denote. respectively. the hy- 
draulic diameter of the circutar tube, the kinetic viscosity 
and the thermal diffusivity. 

For details on the method of soiution and notations, see 
Nguyen [13] and Nguyen and Macfaine-cross [i4]. 

3. ISOTHERMAL FLOW RESULTS AND 
PREVIOUS SOLUTIONS 

The centerline velocity at the entrance (x = 0) for various 
Re is shown in Table 1. At low Re, with a uniform inlet 
condition at upstream infinity, the upstream diffusion of 
momentum is quite significant as can be seen from the devel- 
opment of the centerline velocity at the entrance. The dimen- 
sionless velocity increases with decreasing Re at s = 0 and is 
6.6-61.8% higher than the mean velocity a,. Inside the 
stream tube, wall shear takes effect and the~nterlinevelocity 
increases with Re. From the graphical results of Pagliarini 
[12], the values for the centerline velocity at Re = 5 and 

Table 1. u,,,/u,,, at entrance (X = 0) 

Re= 1 2 5 10 20 50 100 200 1000 

I .6424 1.6175 I.5447 1.4422 1.3145 1.1911 1.1352 I .0973 1.0661 
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Table 2. Hydrodynamic entrance length L$ 

Re Present Pdgliarini Christiansen Vrentas 

1 0.3831 0.385 
2 0.2025 
5 0.09506 0.095 

10 0.0630 I 
20 0.05553 
50 0.05439 0.054 

100 0.05462 
200 0.05483 

1000 0.05500 0.055 

50 are 1.54 and 1.19, respectively, which are in very good 
agreement with the present solution. 

The non-dimensional hydrodynamic entrance length IY&, 
defined as the duct length required to achieve a duct section 
maximum velocity of 99% of the fully developed value (2 
for the circular tube), is presented in Table 2 with the avail- 
able data from Pagliarini [12], Christiansen et al. [3], and 
Vrentas rt al. [2]. The present Lh’, is in excellent agreement 
with the values obtained by Pagliarini and is longer than the 
values given in the earlier numerical analyses. Lh’, = 0.056 
and is constant when based on a boundary layer type analysis 
(Shah and London [l]). However when the complete set of 
Navier-Stokes equations is solved Lly is a strong function 
of Re for low Re fows, as seen in Table 2. 

For Pr = 0.7 and 1 < Re < 10, the following correlation 
is provided to approximate these values with the error rang- 
ing from 0.6% at Re = 2 to 3.3% at Re = 10 

L;> = 0.025 19 +0.3572/Re. (5) 

For Re 2 20 L$ can be taken as 0.055 with the maximum 
error of I. 1% at Re = 50. 

Atkinson ef al. [15] and Friedmann et al. [16] presented 
equations to calculate L& for the hydrodynamically devel- 
oping flow problem with a uniform entrance velocity profile. 
These equations are a linear combination of creeping flow, 
obtained by minimization of viscous dissipation using a finite 
element method, and boundary layer type solution (Atkin- 
son er al.), or are based on the solution of the Navier-Stokes 
equations (Friedmann et rtl.). The values of L& given from 
these equations are considerably higher than those in Table 
2. The main contributing factor for this is the significant 
upstream diffusion of momentum in the case considered here, 
hence more developed velocity profiles and shorter entrance 
lengths. 

For the case of simultaneously developing flow, Shah and 
London [l] have presented numerical solutions for the local 
Nusselt numbers Nu, from Manohar [lo] and Hwang and 

0.333 0.33 

0.086 
0.059 

0.050 0.047 
0.05 I 0.047 
0.055 0.0508 
0.056 

Sheu [17]. Table 3 compares these with values interpolated 
from the present solution for Pr = 0.7 and Re = 1000. The 
present fully developed flow values agree to five significant 
figures with classical analytic solutions, whereas Manohar’s 
Nu,,,,approaches 3.63 asymptotically, a value 1% lower than 
the exact value of 3.6568. The present NC+, are in good 
agreement with those of Manohar, but the values of Nu,,, 
are slightly higher than the previous values. 

4. CONSTANT WALL TEMPERATURE 
RESULTS 

The asymptotic Nusselt number for fully developed flow 
was presented precisely by Shah and London as 

NM, = 3.6567935 (6) 

for the case of negligible axial heat conduction, viscous dis- 
sipation, flow work, and thermal energy sources within the 
fluid. When the effect of axial heat conduction is included, 
Nur is a strong function of the P&let number. The results 
for Nu, from the present numerical work are presented in 
Table 4 for comparison with values given in Shah and 
London. The present Nur is only 0.3% lower than the ana- 
lytic value for Pe = 0.7 and agrees to 5 significant figures at 
higher Pe. 

In the case of simultaneously developing flow in circular 
tubes, values for the incremental heat transfer number N(m) 
are non-existent in the literature for comparison with the 
present work. This is due to the fact that in most previous 
solutions, the approximation of N(co) usually deteriorates 
at the end of the thermal entrance. In the present work, 
discretization error is reduced by a combination of efficient 
numerical schemes, stretched mesh, and the extrapolation to 
zero mesh size. To show some typical discretization errors, 
the fully developed incremental heat transfer number for 
constant wall temperature N,(m) is given in Table 5, to- 

Table 3. Comparison of Nu, for Pr = 0.7 and Re = 1000 

N&T Nu, II 

s* Present Manohar Hwang Present Manohar 

0.0 37.9601 
0.002857 8.4482 
0.003571 7.8471 
0.007143 5.8929 
0.010710 5.1761 
0.014290 4.7648 
0.017860 4.4885 
0.021430 4.2945 
0.028570 4.0469 
0.035710 3.9037 
0.071430 3.6890 
0.076610 3.6817 
0.107100 3.6620 

8.24 
7.54 
5.84 
5.11 
4.69 
4.42 
4.23 
3.998 
3.846 
3.641 
3.632 

X.129 
7.469 
5.793 
5.08 1 
4.67 1 
4.409 
4.224 
3.993 
3.862 
3.674 

40.6309 
11.1313 
10.3739 
7.8012 
6.7458 
6.1629 
5.7663 
5.4807 
5.1018 
4.8690 
4.4523 
4.4328 
4.3795 

11.33 
10.31 
7.854 
6.792 
6.179 
5.774 
5.486 
5.108 
4.879 
4.460 
4.439 

3.655 
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Table 4. Fully developed Nr.+ as a function of Pe 
~_ ^_ 

Re 0.7 1.4 3.5 7 14 35 70 140 700 

Present 4.0838 3.9889 3.8264 3.7263 3.6784 3.6611 3.6585 3.6568 3.6568 

Ref. [I] 4.07 I 3.728 3.6568 3.6568 

Tabie 5. incremental heat transfer number N,(W) for Pr = 0.7 
__ 

Re 11 x81 21 x 161 41 x321 Extrapolated Diff. (%) 

1 0.9059 0.9577 1.0397 I .0802 1.2 
2 0.4717 0.5101 0.5528 0.5733 1.1 
5 0.207 I 0.2207 0.2380 0.2464 1.0 

IO 0.1 I01 0.1258 0.1367 0.1417 0.9 
20 0.08566 0.09065 0.09589 0.09839 0.7 
50 0.05441 0.06626 0.07143 0.07357 0.6 

100 0.04796 0.06023 0.06559 0.0678 1 0.6 
200 0.04633 0.05680 0.06362 0.06669 1.2 

1000 0.04575 0.05602 0.06218 0.06492 1.1 

gether with the values for the three grid meshes used in its Re = 5), but deteriorate to a 13% difference at higher Re 
calculation. The difference between two point and three point (0.036 at Re = 50 and 0.035 at Re = 500). 
extrapolation is given in the last column and the largest Equations (9) and (10) approximate the values in Table 6 
difference is 1.2%. It is believed that the residual dis- with a maximum error of 3.1% at Rc = 50 
cretization error in the three point extrapolations used in this 
work is less than 1.2%. 

For Pr = 0.7 and 1 < Re < lOUtI, equations (7) and (8) 
correlate the values in Table 5 with a maximum error of 
3.7% at Re = 10 

Nr(a3) = 0.04278+ l.O414/Re, for 1 < Re < 20 (7) 

Nr(m) = 0.06227+0.698OiRe, for 20 < R4 < 1000. (8) 

The dimeilsionless thermal entry length L,*,. deftned by 
NU,.r(L&) = 1.05Nu, are given in Table 6. For simul- 
taneously developing flow with Pr = 0.7, Shah and London 
suggest the value L:h,T = 0.037 based on the values of Nu,,~ 
of both Manohar [IO] and Hwdng [l l] in Table 3. This is 8% 
lower than the value of 0.0404 obtained in the present work. 
For the Graetz problem (uniform temperature profile at en- 
trance and fully developed velocity profile), the thermaI 
entrance length obtained in the present work (0,03333), see 
Nguyen [7], is very close to the analytic value (0.03347). The 
recent finite clement analysis from Pa~liarini gives values 

for L& which agree exactly with the present work (0.109 at 

L& = 0.02460+0.45.51/Re, for 1 < Re < 20 (9) 

L;lh.T = 0.03933+0.1767/Rr, for 20 < Re < 1000. (10) 

5. CONSTANT WALL HEAT FLUX RESULTS 

Fully developed incremental heat transfer numbers for 
constant wall heat flux NH(~) are given in Table 7 for 
I < Re C IO00 and Pr = 0.7. equations (1 I) and (12) cor- 
relate the values in Table 7 with a maximum error of 2. I %I 

NH(~) = 0.09058+0.2512/Re, for 1 < Re < 20 (11) 

N,(m) = 0.1026, for 20 < Re < 1000. (12) 

For the hydrodynamically developed flow, Shah [I81 
obtained analytically the value of 0.04305 for L$,,l which 
compares very well with the present numerical work 
(0.04290), see Nguyen 171. The thermal entrance length L& 
for simultaneously developing flow and Pr = 0.7 is given in 
Shah and London as 0.053 and is in excellent agreement with 
the present work. The values of L &, calculated by Pagliarini 

Table 6. Thermal entrance length L&for Pr = 0.7 

RB 1 2 5 10 20 50 100 200 1000 

G.T 0.4787 0.2549 0.1090 0.06806 0.04873 0.04154 0.04066 0.04050 0.04040 

Table 7. Incremental heat transfer number NH(~) for Pr = 0.7 

Re I 2 5 10 20 50 100 200 1000 

NH@) 0.3414 0.2165 0.1430 0.1133 0.1034 0.1014 0.1022 0.1025 0.1026 

Table 8. Thermal entrance length L& 

Re 1 2 5 10 20 50 100 200 1000 

Gl.” 0.3296 0.1891 0.1059 0.07383 0.05942 0.05351 0.05268 0.05258 0.05257 
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for the case of constant heat Rux agree very well with the 
values given in Table 8 for high Re (0.053 for Re = 50 and 
0.052 for Re > 100). However, his value of 0.116 at Re = 5 
is 8.7% higher than the present solution. 

For I 6 Re < 1000 and Pr = 0.7, equations (13) and (14) 
correlate the values of L,?,,, presented in Table 8 with a 

in the thermal development region with axial conduc- 
tion. Btirme- U/U/ >)lo//uhcr~. I, I 777184 (1968). 

5. C. J. Hsu, An exact analysis of low P&let number ther- 
mal entry region heat transfer in transversely non-uni- 
form velocity fields, A.I.Ch.E. Jl17, 732-740 (1971). 

6. F. H. Verhoff and D. P. Fisher, A numerical solution of . 
maximum error of 2.4% 

L:h.ll = 0.04663+0.2836/Re, for 1 < Re < 20 (13) 

L$,u = 0.05163+0.1463/Re, for 20 < Re < 1000. (14) 

6. CONCLUSION 

The combined entry length problem in a circular tube with 
realistic upstream boundary conditions has been solved by a 
more accurate numerical method. Accurate Nusselt 
numbers, entrance lengths, and incremental heat transfer 
numbers are given for air and Re ranging from I to 1000. 
The results presented are found to correlate well with I/Re 
for two distinct ranges of Re : low range 1 C Re < 20 ; and 
medium to high range 20 < Re < 1000. The present iso- 
thermal flow results are in excellent agreement with those 
obtained by Pagliarini and up to 16% higher than those by 
previous analyses. For non-isothermal flow, the present fully 
developed Nusselt numbers agree to five significant figures 
with analytic series solutions. The values of L$, given by 
Pagliarini for the simultaneously developing flow in a circular 
tube of infinite extent match the present solution only in 
parts of the Re range. No previous values of the incremental 
heat transfer numbers are available for comparison with the 
present work. 
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